Bipolar Junction Transistor

A bipolar junction transistor (BJT or bipolar transistor) is a type of transistor that relies on the contact of two types of semiconductor for its operation. BJTs can be used as amplifiers, switches, or in oscillators. BJTs can be found either as individual discrete components, or in large numbers as parts of integrated circuits.

Bipolar transistors are so named because their operation involves both electrons and holes. These two kinds of charge carriers are characteristic of the two kinds of doped semiconductor material; electrons are majority charge carriers in n-type semiconductors, whereas holes are majority charge carriers in p-type semiconductors. In contrast, unipolar transistors such as the field-effect transistors have only one kind of charge carrier.

Charge flow in a BJT is due to diffusion of charge carriers across a junction between two regions of different charge concentrations. The regions of a BJT are called emitter, collector, and base. A discrete transistor has three leads for connection to these regions. Typically, emitter is heavily doped compared to other two layers, whereas majority charge carrier concentrations in base and collector layers are about the same. By design, most of the BJT collector current is due to the flow of charges injected from a high-concentration emitter into the base where there are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices.

Share Button

Feedback is important to us.

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!