Conversion of Number System
-
Decimal Number System to Binary Number System:-
(25.625)10 = (X)2
For 25
Output Remainder
25 / 2 = 12 1
12 / 2 = 6 0
6 / 2 = 3 0
3 / 2 = 1 1
1 / 2 = 0 1
For conversion arrange the remainder from bottom to top order.
Therefore RESULT for 25 is (11001)2
For fraction part .625 , we follow given procedure:-
0.625*2=1.250 | integer part =1 |
0.250*2 = 0.500 | integer part =0 |
0.500*2 = 1.000 | integer part =1 |
For conversion arrange the Integer Part from top to bottom order.
Therefore RESULT is .1012
Answer is:- (25.625)10 = (11001.101)2
-
Decimal Number System to Octal Number System:-
(25.40)10 = (X)8
For 25
Output Remainder
25 / 8 = 3 1
3 / 8 = 0 3
For conversion arrange the remainder from bottom to top order.
Therefore RESULT for 25 is (31)8
For fraction part .40, we follow given procedure:-
0.40*8=3.20 | integer part =3 |
0.20*8 = 1.60 | integer part =1 |
0.60*8 = 4.80 | integer part =4 |
0.80*8 = 6.40 | integer part =6 |
For conversion arrange the Integer Part from top to bottom order.
Therefore RESULT is (.3146)8
Answer is:- (25.40)10 = (31.3146)8
-
Decimal Number System to Hexadecimal Number System:-
(590.0628)10 = (X)16
For 25
Output Remainder
590 / 16 = 36 14(E)
36 / 16 = 2 4
2 / 16 = 0 2
For conversion arrange the remainder from bottom to top order.
Therefore RESULT for 25 is (24E) 16
For fraction part .40, we follow given procedure:-
0.0628*16=1.0048 | integer part =1 |
|
integer part =0 |
|
integer part =1 |
|
integer part =3 |
For conversion arrange the Integer Part from top to bottom order.
Therefore RESULT is (.1013)16
Answer is:- (590.0628)10 = (24E.1013)16
-
Binary Number System to Decimal Number System:-
(1101.101)2 = (X)10
= (1 1 0 1. 1 0 1)2
↑ ↑ ↑ ↑ ↑ ↑ ↑
23 22 21 20 2-1 2-2 2-3
= (1x 23 +1x 22 0x 21 +1x 20 ) . ( 1 x 2-1 + 0 x 2-2 +1 x 2-3 )
= (8+4+0+1).(0.50+0.25+0.125)
= (13 .875) 10
-
Octal Number System to Decimal Number System:-
(121.12)8 = (X)10
= (1 2 1. 1 2 )8
↑ ↑ ↑ ↑ ↑
82 81 80 8-1 8-2
= (1x 82 + 2x 81 +1x 80) . (1 x 8-1 + 2 x 8-2)
= (64+16+8).(0.125+0.03125)
= (88 .15625) 10
-
Hexadecimal Number System to Decimal Number System:-
(1A.B1)16= (X)10
= (1 A. B 1 )2
↑ ↑ ↑ ↑
161 160 16-1 16-2
= (1x 161 + 10x 160). (11 x 16-1 +1 x 16-2)
= (16+10). (0.6875+0.0039)
= (26 .6914) 10
-
Octal Number System to Binary Number System:-
(42.65)8 = (X)2
(4 2. 6 5 )2
↑ ↑ ↑ ↑
100 010 110 101
Answer is:- (42.65)8 = (100010.110101)2
-
Binary Number System to Octal Number System:-
(11101.1111)2 = (X) 8
(0 1 1 1 0 1. 1 1 1 1 0 0 )2
↑ ↑ ↑ ↑
3 5 7 4
Answer is:- (11101.1111)2 = (35.74)8
-
Hexadecimal Number System to Binary Number System:-
(42A.65B)8 = (X)2
( 4 2 A. 6 5 B)2
↑ ↑ ↑ ↑ ↑ ↑
0100 0010 1010 0110 0101 1101
Answer is:- (42A.65B)16 = (010000101010.011001011101)2
-
Binary Number System to Hexadecimal Number System:-
(11101.11111)2 = (X)16
(0 0 0 1 1 1 0 1. 1 1 1 1 1 0 0 0 )2
↑ ↑ ↑ ↑
1 D F 8
Answer is:- (11101.11111)2 = (1D.F8)16
-
From Any Number System to Any other Number System:-
(435)6 = (X)4
For this firstly convert base 6 number system into decimal number system. Then convert decimal number system to Base 4 number system.
(4 3 5) 6
↑ ↑ ↑
62 61 60 = (4x 62 +3x 61 + 5x 60)= (165) 10Now convert 165 to base 4.
Output Remainder
165 / 4 = 41 1
41 / 4 = 10 1
10 / 4 = 4 2
2 / 4 = 0 2
Answer is:- (435)6 = (2211)4