Operators:
C language supports a rich set of built-in operators. An operator is a symbol that tells the compiler to perform a certain mathematical or logical manipulation. Operators are used in programs to manipulate data and variables. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result.
Operators are the foundation of any programming language. Thus the functionality of C programming language is incomplete without the use of operators. We can define operators as symbols that help us to perform specific mathematical and logical computations on operands. In other words, we can say that an operator operates the operands.
For example, consider the below statement:
c = a + b;
Here, ‘+’ is the operator known as addition operator and ‘a’ and ‘b’ are operands. The addition operator tells the compiler to add both of the operands ‘a’ and ‘b’.
An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C language is rich in built-in operators and provides the following types of operators −
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
Operator precedence determines the grouping of terms in an expression and decides how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has a higher precedence than the addition operator.
For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.
Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedence operators will be evaluated first.
Category | Operator | Associativity |
---|---|---|
Postfix | () [] -> . ++ – – | Left to right |
Unary | + – ! ~ ++ – – (type)* & sizeof | Right to left |
Multiplicative | * / % | Left to right |
Additive | + – | Left to right |
Shift | << >> | Left to right |
Relational | < <= > >= | Left to right |
Equality | == != | Left to right |
Bitwise AND | & | Left to right |
Bitwise XOR | ^ | Left to right |
Bitwise OR | | | Left to right |
Logical AND | && | Left to right |
Logical OR | || | Left to right |
Conditional | ?: | Right to left |
Assignment | = += -= *= /= %=>>= <<= &= ^= |= | Right to left |
Comma | , | Left to right |
Example
Try the following example to understand operator precedence in C
#include <stdio.h> main() { int a = 20; int b = 10; int c = 15; int d = 5; int e; e = (a + b) * c / d; // ( 30 * 15 ) / 5 printf("Value of (a + b) * c / d is : %d\n", e ); e = ((a + b) * c) / d; // (30 * 15 ) / 5 printf("Value of ((a + b) * c) / d is : %d\n" , e ); e = (a + b) * (c / d); // (30) * (15/5) printf("Value of (a + b) * (c / d) is : %d\n", e ); e = a + (b * c) / d; // 20 + (150/5) printf("Value of a + (b * c) / d is : %d\n" , e ); return 0; }
When you compile and execute the above program, it produces the following result −
Value of (a + b) * c / d is : 90 Value of ((a + b) * c) / d is : 90 Value of (a + b) * (c / d) is : 90 Value of a + (b * c) / d is : 50